A Dissertation Presentation

Ashok Kumar Pant

Central Department of Computer Science & IT, Tribhuvan University, Kirtipur, Nepal

Date: June 22, 2012

Supervisor

Co-Supervisor

Prof. Dr. Shashidhar Ram Joshi

Dr. Sanjeeb Prasad Panday

Presentation Outline

1 Introduction

Introduction

- Handwriting Recognition
- Types of Handwriting Recognition Systems
- Applications
- Problem Definition
- Challenges
- Literature Review
- Objectives
- 2 Research Methodology
 - Proposed System Architecture
 - Preprocessing
 - Feature Extraction
 - Recognition
- 3 Datasets
 - Off-line Nepali Handwritten Dataset 1
 - Off-line Nepali Handwritten Dataset 2
 - Off-line Nepali Handwritten Dataset 3
- 4 Experimentation
 - Experimentation Results
 - Numeral Dataset Experimentation Results
 - Vowel Dataset Experimentation Results
 - Consonant Dataset Experimentation Results
- 5 Conclusion
 - Conclusion
 - Future Enhancement

000000

Handwriting Recognition

Handwriting

Handwriting is a person's individual style of writing.

Handwriting

Handwriting is a person's individual style of writing.

Handwriting Recognition

System's ability to understand intelligible handwritten input from various sources such as paper documents, photographs, touch-screens and other devices.

Handwriting Recognition

Handwriting Recognition

Handwriting

Handwriting is a person's individual style of writing.

Handwriting Recognition

System's ability to understand intelligible handwritten input from various sources such as paper documents, photographs, touch-screens and other devices.

Nepali Handwriting

- Handwriting corresponds to Nepali language.
- Belongs to Devanagari Script.

000000

On-line & Off-line Handwriting Recognition

On-line & Off-line Handwriting Recognition

On-line Handwriting Recognition

- Task of determining what character is being written in some writing device with some digital pen or plotter.
- Availability of trajectory data during writing.

On-line & Off-line Handwriting Recognition

On-line Handwriting Recognition

- Task of determining what character is being written in some writing device with some digital pen or plotter.
- Availability of trajectory data during writing.

Off-line Handwriting Recognition

- Task of determining what characters or words are present in a digital image of handwritten text.
- No temporal information available.

Applications of Handwriting Recognition

- Postal address reading.
- Bank cheque verification.
- Ancient document digitalization.
- Indexing of handwritten documents for searching and sorting.
- Assessment writing for school work.
- Forensic and medical analysis, and so on.

The high-level task is to classify the ordered sequence of images of off-line characters.

- Varying writing styles and shapes
- Unconstrained writings
- Cursive handwritings
- Noise and unnecessary markings
- Segmentation of characters from documents

Literature Review

Introduction

State of the Art of Handwriting Recognition

- Historic review of OCR research and development after the digital age and until 1990s is described in [1] by Suen et.el. It describes the Template Matching and Shape Analysis techniques on OCR.
- State of the art on on-line handwriting recognition till 1990s is described in [2].
- After 1990, ANN, HMM, fuzzy set reasoning and other statistical learning tools take the steering of OCR research.
- Handwriting recognition until 2010 is given in [3],[4],[5].
- Handwriting Recognition for Devanagari Script can be found in [6],[7],[8],[9],[10],[5].
- Nepali handwriting research is given in [11],[12].

Objectives of the Research

- To compare Accuracy and efficiency of Multilayer Perceptron and Radial Basis function Neural Network on Off-line Nepali Handwriting Recognition Problem.
- To investigate Geometric and Statistical feature extraction techniques for off-line Nepali handwriting recognition problem.
- To investigate preprocessing techniques (segmentation, skeletonization, normalization, etc.) for handwritten documents.
- To create benchmark databases for Nepali handwritten characters.

Proposed Handwriting Recongition System

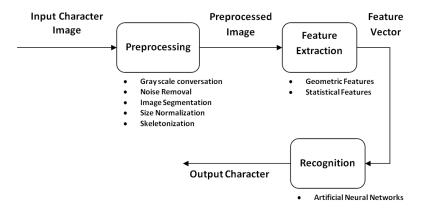


Figure: Off-line Handwriting Recognition System Architecture

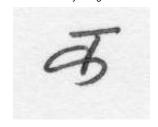
Preprocessing


Preprocessing

Image Preprocessing Algorithmic Steps

- Read image.
- 2 Convert RGB images to gray scale image.
- Remove noise using median filter.
- 4 Convert the gray scale images into binary image.
- Invert the binary image.
- 6 Determine the universe of discourse of image.
- Normalize the image to a predefined size of 36x36 pixels.
- 8 Convert the normalized image into single pixel thick skeleton image.

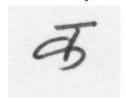
$$g(x, y) = 0.2989 * f_B(x, y) + 0.5870 * f_G(x, y) + 0.1140 * f_B(x, y)$$



References

2. Noise Removal

$$g(x, y) = median\{f(i, j) | (i, j) \in w\}$$



Denoised Image

$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) \ge t \\ 0 & \text{if } f(x,y) < t \end{cases}$

Denoised Image

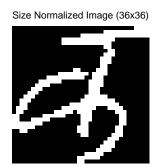
Binarized Image

4. Image Inversion

$$g(x,y)=1-f(x,y)$$

Binarized Image

Inverted Image



Discoursed Image

6. Image Size Normalization

7. Image Skeletonization

Size Normalized Image (36x36)

Skeletonized Image

Geometric Feature Extraction

Directional Features

Image is zoned into 3x3 sub-images and directional vectors are extracted [13]. Features extracted from each zone are:

- The number of horizontal lines.
- The number of vertical lines.
- Number of Right diagonal lines.
- Number of Left diagonal lines.
- Normalized Length of all horizontal lines.
- Normalized Length of all vertical lines.
- Normalized Length of all right diagonal lines.
- Normalized Length of all left diagonal lines.
- Number of intersection points

Geometric Feature Extraction

2. Euler Number [14]

Difference between number of objects and number of holes in an character image.

2. Euler Number [14]

Difference between number of objects and number of holes in an character image.

3. Eccentricity

Ratio of the distance between the foci of the ellipse to the length of semi-major axis of the smallest ellipse that encloses the character image.

1. Moment Invariant Features [15],[16]

The 2-D moment of order (p + q) for a digital image f(x, y) of size MxN is given by,

$$m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^p y^q f(x, y) \ \ p, q = 0, 1, 2, ...$$

A set of seven normalized central moments can be derived from the second and third moments [15] which are invariant to translation, scale change, mirroring, and rotation.

Statistical Feature Extraction

1. Moment Invariant Features [15],[16]

The 2-D moment of order (p + q) for a digital image f(x, y) of size MxN is given by,

$$m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^p y^q f(x,y) \ \ p,q=0,1,2,...$$

A set of seven normalized central moments can be derived from the second and third moments [15] which are invariant to translation, scale change, mirroring, and rotation.

2. Area of Character Skeleton

Number of pixels in character skeleton.

Statistical Feature Extraction

1. Moment Invariant Features [15],[16]

The 2-D moment of order (p+q) for a digital image f(x,y) of size MxN is given by,

$$m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^p y^q f(x, y) \ \ p, q = 0, 1, 2, ...$$

A set of seven normalized central moments can be derived from the second and third moments [15] which are invariant to translation, scale change, mirroring, and rotation.

2. Area of Character Skeleton

Number of pixels in character skeleton.

3. Centroid

Centre of mass for character image.

Non-linear, parallel, distributed, highly connected network having capability of adaptivity, self-organization, fault tolerance and evidential response which closely resembles with physical nervous system.

Non-linear, parallel, distributed, highly connected network having capability of adaptivity, self-organization, fault tolerance and evidential response which closely resembles with physical nervous system.

ANN Learning Methods

- Multilayer Perceptron (MLP)
- 2 Radial Basis Function (RBF)

1. Multilayer FeedForward Network

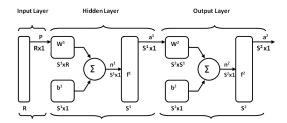


Figure: Multilayer Feedforward Network

The network output of layer k + 1 is given by,

$$a^0 = p$$

 $a^{k+1} = f^{k+1}(W^{k+1}a^k + b^{k+1})$

Recognition

1. Multilayer FeedForward Network

Multilayer Feedforward Backpropagation Learning Algorithms

- Levenberg-Marguardt (LM) Learning [17]
 - Numerical optimization technique
 - Faster Convergence.
 - Requires more memory.
- Gradient Descent with Momentum and Adaptive Learning Rate (GDMA)
 - Heuristic based optimization technique
 - slower Convergence.
 - Highly sensitive to local minima.

For MLP algorithm, the performance index to be minimized is defined as.

$$E = \frac{1}{2} \sum_{p=1}^{Q} \sum_{k=1}^{K} (t_{kp} - a_{kp})^{2}$$

1. Multilayer FeedForward Network

(a). Levenberg-Marquardt (LM) Learning Algorithm

The increment of weights Δw at iteration t can be obtained as,

$$\Delta \mathbf{w} = -(\mathbf{J}^T \mathbf{J} + \mu \mathbf{I})^{-1} \mathbf{J}^T \mathbf{E}$$

Now, network weights are updated as,

$$W_{t+1} = W_t + \Delta W$$

Multilayer FeedForward Network

(b). Gradient Descent with Momentum & Adaptive Learning Rate

The increment of weights Δw at iteration t+1 can be obtained as,

$$\Delta w(t+1) = \mu \Delta w(t) + (1-\mu)\eta \nabla E$$

Now, network weights are updated as,

$$w(t+1) = w(t) + \Delta w(t+1)$$

2. Radial Basis Function Network

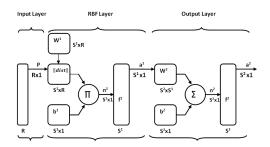


Figure: Radial Basis Function Network

The network output for RBF network can be obtained as,

$$t_k = \sum_{j=1}^M w_{kj} \phi_j(x) + b_k$$

Gaussian Radial Basis Function

A normalized Gaussian radial basis function is given by,

$$\phi_j(x) = \exp(-\frac{\|x - \mu_j\|^2}{2\sigma_j^2})$$

where μ_j and σ_j denote the centre and spread width of the j^{th} neuron, respectively.

Orthogonal Least Square (OLS) Learning Algorithm [18]

- Supervised algorithm for radial basis neural network training
- Forward stepwise regression procedure
- Sequentially selects the centre that results in the largest reduction of sum-square-error at the output using Grahm-Schmidt orthogonalization procedure

Off-line Nepali Handwritten Dataset 1

Introduction

Nepali Handwritten Consonant Dataset

- 36 classes
- 205 samples each class (total 7380 images)
- Samples are taken from 45 different writers

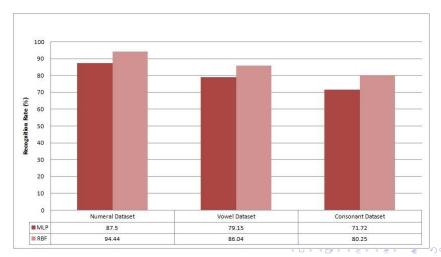
- 12 classes
- 221 samples each class (total 2652 images)
- Samples are taken from **44** different writers

Off-line Nepali Handwritten Dataset 3

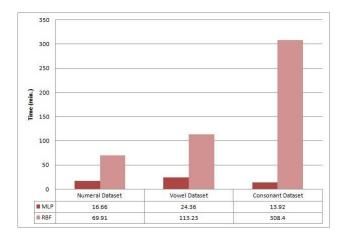
Introduction

Nepali Handwritten Numeral Dataset

- 10 classes
- 228 samples each class (total 2280 images)
- Samples are taken from **45** different writers

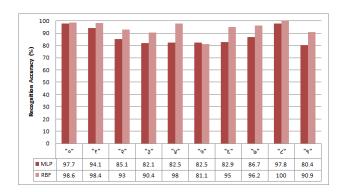

Neural Network Configuration

Dataset Name	Dataset Size	Recognition Algorithm	Train/Test Samples	Hidden Layer Neurons	No. of Epochs	
Numeral	10 * 288	MLP (LM)	2016/432	30	9	
Dataset	= 2880	RBF	2304/576	580	580	
Vowel	12 * 221	MLP (LM)	1857/397	30	12	
Dataset	= 2652	RBF	2122/530	840	840	
Consonant	36 * 205	MLP (GDMA)	5411/891	100	1000	
Dataset	= 7380	RBF	5166/891	1025	1025	


Recognition Results

Dataset Name	Recognition Algorithm	Training Time (min.)	Recognition Accuracy (%)	Miss-classification Rate (%)
Numeral	MLP	16.66	87.50	12.50
Dataset	RBF	69.91	94.44	5.55
Vowel	MLP	24.36	79.15	20.85
Dataset	RBF	113.23	86.04	13.96
Consonant	MLP	13.92	71.72	28.28
Dataset	RBF	308.4	80.25	19.75

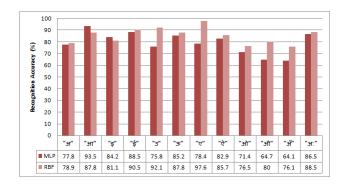
Recognition Accuracy Graph


Network Training Time Graph

Individual Recognition Result for Numeral Dataset

Class	Recognition Algorithms	Recognition Accuracy (%)	Class	Recognition Algorithms	Recognition Accuracy (%)
0	MLP	97.7	9	MLP	94.1
	RBF	98.6	'	RBF	98.4
2	MLP	85.1	3	MLP	82.1
~	RBF	93.0		RBF	90.4
8	MLP	82.5	<u>٧</u>	MLP	82.5
~	RBF	98.0		RBF	81.1
Eφ	MLP	82.9	10	MLP	86.7
	RBF	95.0		RBF	96.2
τ	MLP	97.8	8	MLP	80.4
١	RBF	100	ا ع	RBF	90.9

Individual Recognition Result for Numeral Dataset Graph


Confusion Matrix for Numeral Dataset Testing

Class	0	9	2	2	K	×	ج	6	τ	8
0	69	0	0	0	0	0	0	0	0	1
9	0	61	0	0	0	0	1	0	0	0
2	0	0	53	4	0	0	0	0	0	0
3	0	0	3	47	0	0	2	0	0	0
K	0	0	0	0	49	1	0	0	0	0
×	0	0	5	3	1	43	0	0	0	1
Ep	0	1	0	0	0	0	57	1	0	0
6	0	0	0	0	1	0	1	51	0	0
τ	0	0	0	0	0	0	0	0	64	0
8	0	1	1	1	0	1	1	0	0	50

Individual Recognition Results for Vowel Dataset

Class	Recognition Algorithms	Recognition Accuracy (%)	Class	Recognition Algorithms	Recognition Accuracy (%)
3.1	MLP	77.8	भूग	MLP	93.5
<i>.</i>	RBF	78.9	5"	RBF	87.8
<u>\$</u>	MLP	84.2	- &	MLP	88.5
~	RBF	91.1	~	RBF	90.5
3	MLP	75.8	3,	MLP	85.2
3	RBF	92.1		RBF	87.8
Þ	MLP	78.4	₹	MLP	82.9
~	RBF	97.6	~	RBF	85.7
37)	MLP	71.4	.सी	MLP	64.7
3417	RBF	76.5	347	RBF	80.0
37	MLP	64.1	अः	MLP	86.5
	RBF	76.1	, ,	RBF	88.5

Individual Recognition Result for Vowel Dataset Graph

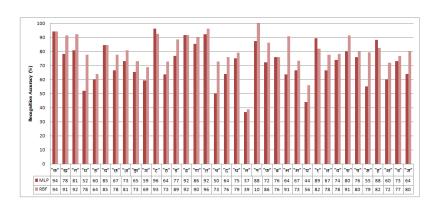
Vowel Dataset Experimentation Results

Confusion Matrix for Vowel Dataset Testing

Class	34	आ	\$	इ	3	3,	Þ	₹	37)	औ	347	340
31	45	6	0	0	0	4	0	0	1	0	1	0
377	3	36	0	0	0	0	0	0	0	1	0	1
\$	0	0	51	0	1	0	0	0	1	1	2	0
-	0	0	2	38	0	0	0	1	0	0	1	0
3	1	0	2	0	35	0	0	0	0	0	0	0
3,	2	0	0	0	1	36	0	0	0	0	0	2
₽	1	0	0	0	0	0	40	0	0	0	0	0
₹	1	0	0	0	0	0	2	36	2	0	1	0
37)	0	0	0	0	0	0	0	1	26	5	2	0
औ	0	0	0	0	0	0	0	0	6	32	2	0
3-7	1	0	0	2	0	0	0	1	5	2	35	0
औ ्	1	3	0	0	0	0	0	0	0	2	0	46

Individual Recognition Results for Consonant Dataset

Class	Recognition Algorithms	Recognition Accuracy (%)	Class	Recognition Algorithms	Recognition Accuracy (%)
す	MLP	94.1	Za	MLP	78.3
49	RBF	94.1	1 29	RBF	91.3
IT	MLP	80.8	I	MLP	51.9
0/	RBF	92.3	् ध	RBF	77.8
30	MLP	60.0	J	MLP	84.6
ەن	RBF	64.0	1 74	RBF	84.6
8	MLP	66.7	\mathcal{F}	MLP	73.1
φ	RBF	77.8	1)	RBF	80.8
म	MLP	65.4	FC	MLP	59.4
σŋ	RBF	73.1	5	RBF	68.8
ਰ	MLP	96.3	उ	MLP	63.6
G	RBF	92.6	9	RBF	72.7
3	MLP	76.9	ढ	MLP	91.7
3	RBF	88.5	9	RBF	91.7
TT	MLP	85.0	ਰ	MLP	92.3
U1	RBF	90.0	(1	RBF	96.2
₽	MLP	50.0	76	MLP	64.0
U	RBF	72.7	1 *	RBF	76.0


Consonant Dataset Experimentation Results

Introduction

Individual Recognition Results for Consonant Dataset

Class	Recognition Algorithms	Recognition Accuracy (%)	Class	Recognition Algorithms	Recognition Accuracy (%)
ET	MLP	75.0	त	MLP	36.8
U	RBF	79.2	1 01	RBF	38.8
प	MLP	87.5	দ্য	MLP	72.4
Ч	RBF	100	7)	RBF	86.2
ā	MLP	75.9	F	MLP	63.6
Ø	RBF	75.9	1 01	RBF	90.9
म	MLP	66.7	य	MLP	44.0
gri	RBF	73.3	1 24	RBF	56.0
Į	MLP	89.3	ल	MLP	66.7
~	RBF	82.1	(1)	RBF	77.8
a	MLP	73.9	21	MLP	80.0
4	RBF	78.3	~1	RBF	91.4
Ħ	MLP	76.0	ম	MLP	55.2
Ċ,	RBF	80.0		RBF	79.3
5	MLP	88.2	- 84	MLP	60.0
G.	RBF	82.4	91	RBF	72.0
K	MLP	73.1	TI.	MLP	64.0
7	RBF	76.9	1 21	RBF	80.0

Individual Recognition Result for Consonant Dataset Graph


```
0 0 0 18 0 0
    1 0
        0 0 0 0 0 0
0 0
  0
    0 0 0
        0
          0 0 0 0 0
```


References

Conclusion

Introduction

Conclusion

- Handwriting recognition is a difficult problem due to high variations in human handwritings, overlapped and joined characters, shape, size and styles of written characters, etc.
- Neural Network based off-line handwriting recognition system is experimented on self created Nepali handwritten datasets.
- Preprocessing is an important part of recognition engine for extracting area of interest from character image.
- Feature extraction engine is the most important part of the recognition system for higher accuracy.
- RBF based recognition system outperforms MLP based recognition system, but it takes little more time while training.

Future Enhancement

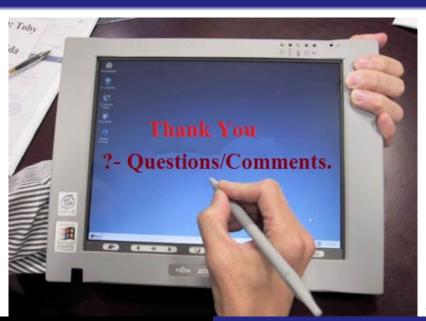
- Proposed system can be tested with known handwritten datasets like Germana database, IAM database, MNIST database, etc.
- Experimentation can be enhanced by taking other spatial domain features along with frequency domain features.
- Purposed system can be extended for the recognition of words, sentences and documents.
- Purposed system can be extended for multilingual character recognition.

References

Bibliography I

Introduction

- [1] S. Mori, C. Y. Suen, and K. Yamamoto. Historical review of OCR research and development. Proceedings of IEEE, 80(7):1029-1058, July 1992,
- [2] Charles C. Tappert, Ching Y. Suen, and Toru Wakahara. The state of the art in on-line handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-12(8):787-808. August 1990.
- [3] Alessandro Vinciarelli. A survey on off-line cursive word recognition. Pattern Recognition, 35(7):1433–1446, July 2002.
- [4] D. Ghosh, T. Dube, and A. P. Shivaprasad. Script recognition A review. IEEE Trans. Pattern Anal. Mach. Intell. 32(12):2142-2161, 2010.
- [5] Vikas J. Dongre and Vijay H. Mankar, A review of research on devnagari character recognition, CoRR. abs/1101.2491, 2011.
- [6] P. S. Deshpande, Latesh Malik, and Sandhya Arora. Fine classification & recognition of hand written devnagari characters with regular expressions & minimum edit distance method. JCP, 3(5):11-17, 2008.
- Sandhya Arora, Debotosh Bhattacharjee, Mita Nasipuri, Dipak Kumar Basu, and Mahantapas Kundu. Multiple classifier combination for off-line handwritten devnagari character recognition, June 30 2010.
- Sandhya Arora, Debotosh Bhattachariee, Mita Nasipuri, L. Malik, M. Kundu, and D. K. Basu, Performance comparison of SVM and ANN for handwritten devnagari character recognition, June 30 2010.
- B. Shaw, S. K. Parui, and M. Shridhar. Offline handwritten devanagari word recognition: A segmentation based approach. In ICPR, pages 1-4, 2008.
- [10] N. Sharma, U. Pal, F. Kimura, and S. Pal. Recognition of off-line handwritten devnagari characters using quadratic classifier. In Indian Conference on Computer Vision, Graphics and Image Processing, pages 805-816, 2006.



12(1), 2007.

Introduction

[11] K. C. Santosh and Cholwich Nattee. Template-based nepali handwritten alphanumeric character recognition. Thammasat International Journal of Science and Technology (TIJSAT), Thammasat University, Thailand,

- [12] K. C. Santosh and Cholwich Nattee, A comprehensive survey on on-line handwriting recognition technology and its real application to the nepalese natural handwriting. February 09 2009.
- [13] M. Blumenstein, B. Verma, and H. Basli. A novel feature extraction technique for the recognition of segmented handwritten characters. In ICDAR, pages 137-141, 2003.
- William K. Pratt. Digital Image Processing (2nd Edition). John Wiley & Sons, Inc., New York, New York, 1991.
- [15] Ming-Kuei Hu. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory. IT-8:179-187, 1962,
- [16] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Third Edition, Prentice Hall, 2008.
- [17] Martin T. Hagan and Mohammed B. Menhaj. Training feedforward networks with the Marguardt algorithm. IEEE Transactions on Neural Networks, 5(6):989-993, November 1994.
- [18] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. on Neural Networks, 2:302-309, 1991.
- [19] R. Baiai and S. Chaudhury, Signature verification using multiple neural classifiers. *Pattern Recognition*. 30(1):1-7. January 1997.

