
Deep Learning Based Large Scale Handwritten
Devanagari Character Recognition

Ashok Kumar Pant (M.Sc.)
Institute of Science and Technology

TU Kirtipur, Nepal
Email: ashokpant87@gmail.com

Prashnna Kumar Gyawali (B.E.)
Institute of Engineering

Pulchowk, Nepal
Email: gyawali.prasanna@gmail.com

Shailesh Acharya (B.E)
Institute of Engineering

Pulchowk, Nepal
Email: sailes437@gmail.com

Abstract—In this paper, we introduce a new public image
dataset for Devnagari script: Devnagari Character Dataset(DCD).
Our dataset consists of 92 thousand images of 46 different classes
of characters of Devnagari script segmented from handwritten
documents. We also explore the challenges in recognition of Dev-
nagari characters. Along with the dataset, we also propose a deep
learning architecture for recognition of those characters. Deep
Convolutional Neural Network have shown superior results to
traditional shallow networks in many recognition tasks. Keeping
distance with the regular approach of character recognition by
Deep CNN, we focus the use of Dropout and dataset increment
approach to improve test accuracy. By implementing these
techniques in Deep CNN, we were able to increase test accuracy
by nearly 1 percent. The proposed architecture scored highest
test accuracy of 98.47% on our dataset.

Keywords—Handwritten character recognition, Deep convolu-
tional neural networks, Image processing, Computer vision, De-
vanagari handwritten character dataset.

I. INTRODUCTION

Character classification is an important part in many
computer vision problems like Optical character recognition,
license Plate recognition, etc. Development of a recognition
system is an emerging need for digitizing handwritten Nepali
documents that use Devnagari characters. Optical Character
Recognition systems are least explored for Devnagari charac-
ters. [1] [2] present a few approaches for segmentation and
recognition of Devnagari charcters. Our task is challenging
because we not only have to deal with classification but also
preparation of dataset. So in this paper, we introduce a new
publicly available dataset, Devnagari Character Dataset, of 92
thousand images of 46 Devnagari characters. Then, we also
propose Deep learning architecture to classify the characters
in DCD. Introduction of multilayer perceptron network has
been a milestone in many classification tasks in computer
vision [3]. But, performance of such a network has always
been greatly dependent on the selection of good representing
features [4] [5]. Deep Neural Networks on the other hand do
not require any feature to be explicitly defined, instead they
work on the raw pixel data generating the best features and
using it to classify the inputs into different classes [6]. Deep
Neural networks consist of multiple nonlinear hidden layers
and so the number of connections and trainable parameters are
very large. Besides being very hard to train, such networks also
require a very large set of examples to prevent overfitting. One
class of DNN with comparatively smaller set of parameters
and easier to train is Convolutional Neural Network [7].The
ability of CNN to correctly model the input dataset can be

varied by changing the number of hidden layers and the
trainable parameters in each layer and they also make correct
assumption on the nature of images [8]. Like a standard
feed forward network, they can model complex non-linear
relationship between input and output. But CNN have very
few trainable parameters than a fully connected feed-forward
network of same depth. CNNs introduce the concept of local
receptive field, weight replication and temporal subsampling
[9] which provide some degree of shift and distortion in-
variance. CNNs for image processing generally are formed
of many convolution and sub-sampling layers between input
and output layer. These layers are followed by fully connected
layers thereby generating distinctive representation of the input
data. Beside image recognition, CNNs have also been used
for speech recognition [10] [11]. Although deep convolutional
neural networks have a small and inexpensive architecture
compared to standard feed forward network of same depth,
training a CNN still requires a lot of computation and a large
labeled dataset. Training such a network was not so effective
and did not produce any superior result to traditional shallow
network, until recently. With the availability of large labeled
dataset like IMAGENET, NIST, SVHN, development of state
of the art GPUs and introduction of unsupervised pre-training
phase, CNNs have at present proven to surpass traditional
feed forward network in a number of classification tasks. In
CNNs, initializing the weight randomly and applying gradient
descent and backpropagation to update the weights seems to
generate poorer solution for a deep network [12]. So, generally,
greedy layer wise unsupervised pre training is applied prior to
supervised training. Why such unsupervised training helps is
investigated in [13].

II. DEVANAGARI CHARACTER DATASET

A. Devanagari Script

Devanagari is part of the Brahmic family of scripts of
Nepal, India, Tibet, and South-East Asia [14], [15]. The script
is used to write Nepali, Hindi, Marathi and similar other
languages of South and East Asia. The Nepalese writing
system adopted from Devanagari script consists of 12 vowels,
36 base forms of consonant, 10 numeral characters and some
special characters. Vowel characters are shown in Fig. 1,
consonants characters in Fig. 2 and numeral characters in Fig.
3. Moreover, all 36 consonants could be wrapped with the
vowels generating 12 other derived forms for each branch of
consonant character. One such example for “pa” is shown in
Fig. 4.

Fig. 1: Devanagari vowels.

Fig. 2: Devanagari consonants.

Fig. 3: Devanagari numerals.

Fig. 4: Derived forms of consonant “pa” when wrapped with
vowels.

B. Devanagari Handwritten Character Dataset

Devanagari Handwritten Character Dataset is created by
collecting the variety of handwritten Devanagari characters
from different individuals from diverse fields. Handwritten
documents are than scanned and cropped manually for indi-
vidual characters. Each character sample is 32x32 pixels and
the actual character is centered within 28x28 pixels. Padding
of 0 valued 2 pixels is done on all four side to make this
increment in image size. the images were applied gray-scale
conversion. After this the intensity of the images were inverted
making the character white on the dark background. To make
uniformity in the background for all the images, we suppressed
the background to 0 value pixel. Each image is a gray-scale
image having background value as 0.

Devanagari Handwritten Character Dataset contains total of
92, 000 images with 72, 000 images in consonant datasest and
20, 000 images in numeral dataset. Handwritten Devanagari
consonant character dataset statistics is shown in Table I and
handwritten Devanagari numeral character dataset statistics is
shown in Table II.

C. Challenges in Devanagari Character Recognition

There are many pairs in Devnagari script, that has similar
structure differentiating each with structure like dots, hori-
zontal line etc. Some of the examples are illustrated in Fig.
5. The problem becomes more intense due to unconstrained
cursive nature of writings of individuals. Two such examples
are shown in Fig. 6.

TABLE I: Consonant Character Dataset

Class

2,000 2,000 2000 2,000 2,000 2,000 2,000 2000 2,000 2,000 2,000 2,000

Class

2,000 2,000 2000 2,000 2,000 2,000 2,000 2000 2,000 2,000 2,000 2,000

Class

2,000 2,000 2000 2,000 2,000 2,000 2,000 2000 2,000 2,000 2,000 2,000

Total 72,000

TABLE II: Numeral Dataset

Class

2,000 2,000 2000 2,000 2,000 2,000 2,000 2000 2,000 2,000

Total 20,000

III. CHARACTER RECOGNITION

A. Convolutional Neural Networks

Convolutional Neural Network (CNN or ConvNet) is a
biologically-inspired trainable machine leaning architecture
that can learn from experiences like standard multilayer neural
networks. ConvNets consist of multiple layers of overlapped
tiling collections of small neurons to achieve better represen-
tation of the original image. ConvNets are widely used for
image and video recognition. There are three main types of
layers used to build a ConvNet architecture.

1) Convolution Layer: The convolution layer is the core
building block of a convolutional neural network. It convolves
the input image with a set of learnable filters or weights, each
producing one feature map in the output image.

2) Pooling Layer: The pooling layer is used to progres-
sively reduce the spatial size of the representation to reduce
the amount of parameters and computation in the network.
The pooling layer takes small rectangular blocks from the
convolution layer and subsamples it to produce a single output
from that block. There are several ways to do this pooling,
such as taking the average or the maximum, or a learned linear
combination of the neurons in the block.

3) Fully-Connected Layer: The fully-connected layer is
used for the high-level reasoning in the neural network. It takes
all neurons in the previous layer and connects it to every single
neuron it has. Their activations can be computed with a matrix
multiplication followed by a bias offset as a standard neural
networks.

B. The Architecture

A simple convolutional neural network similar to the one
used in our recognition system is shown in Fig. 7. The
input layer consists of the raw pixel values from the 32x32
grayscale image and has no trainable parameters. The first
convolution layer has 4 feature maps with 784 units/neurons
each(28 x 28). Each feature map is shown in figure as 2D
planes and they have different set of weights. All the units
in a feature map share the same set of weights and so they
are activated by the same features at different locations. This
weight sharing not only provides invariance to local shift in

Fig. 7: Convolutional Neural Network.

Difference being horizontal line at top

Difference being presence of single dot on right
side

Difference being presence of small circle and
small down stroke line

Fig. 5: Structural formation of characters.

Fig. 6: Different characters written similarly.

feature position but also reduces the true number of trainable
parameters at each layer. Each unit in a layer receives its
input from a small neighborhood at same position of previous
layer. So the number of trainable weights associated with
each unit in a convolutional layer depends on the chosen size
of the neighborhood of previous layer mapped to that unit.
Since all the units are activated only from the input taken
from a local neighborhood they detect local features such
as corners, edges, end-points. This concept of local receptive
field is inspired from study of the locally-sensitive, orientation-
selective neurons in the cats visual system [16].

For a 5x5 kernel as shown in Fig. 7 the number of input
weights for each unit is 25. In addition the units also have a
trainable bias. The total number of units in a layer depends
upon the size of kernel in the previous layer and overlap
between the kernels.

The convolutional layer is followed by a sub-
sampling/pooling layer. Sub sampling layer reduces the
resolution of the feature map from convolution layer by
averaging the features in the neighborhood or pooling for
a maximum value. Because the exact position of features
vary for different images of the same character, it is more
desirable that the system does not learn the absolute position
of feature but instead learn the relative position among
the features. The pooling layer helps achieve this goal and
makes the classifier more immune to shift and distortion. It
aggregates the information within a set of small local regions

and produces a pooled feature map as output. The number of
units in a pooling layer thus depends upon the local region
of the previous convolution layer feeding input to the units
in pooling layer. So for a non overlapping scheme and a
2x2 region from previous layer connected to units in pooling
layer the dimension of feature maps reduce to half of the
convolution layer. The max pooling method checks for the
maximum value on its local receptive field, multiplies it by
a trainable coefficient, adds a trainable bias and generates
output.

The second convolution layer follows this sub-sampling
layer. Each feature map in C2 layer is generated by taking
input from S1. The units in C2 get their input from the 5x5
neighborhood at identical position of some layers in S1 and
not all. The reason for not connecting C2 feature maps to
all feature maps of S1 layer is to reduce the total number of
trainable parameters and, this also introduces randomness in
providing input to different feature maps with the assumption
that this will help them to learn complementary features
with one another. The output of this convolution layer is
subsampled, convolved and forwarded to fully connected layer.
From this point we obtain a 1D feature vector. The fully
connected layers model the input by applying non-linearity
like in a traditional feed-forward network. The type of non-
linearity used is ReLU-non linearity.

f(x) = max(0, x) (1)

The reason for using it instead of the widely popular non-
linear functions like

f(x) = tanh(x) (2)

and

f(x) = (1 + exp−x)−1 (3)

is because training with gradient-descent is comparatively
much faster for ReLU than the other non-linearities [17]. The
depth of the network and the size of different layers to be
used depends greatly on the dataset and the problem domain.
Furthermore, the number of feature maps in a layer, the size
of the kernel on each layer and the choice of non-overlapping
or overlapping kernel and the extent of overlap also produces
different results. So, in our case we tested different architec-
tures by varying these parameters and presented results of the
architecture producing the highest accuracy on the test data
set. The result of the tests are summarized on the Experimental
setting and results section.

C. Over-fitting in the Deep Network

The large and deep architecture of CNN with large bank of
trainable parameter makes it susceptible to overfitting. While
training the deep networks, it is very difficult to find optimal
hyper parameters of the functions that share the parameters.
These networks being large, require large amount of training
data. Below given are some approaches we used to prevent our
model from overfitting.

1) Dataset augmentation: For the better recognition mod-
els, we require to have more training samples while training
the system [18]. This can be achieved by augmenting available
dataset by mirroring, rotation, jittering, noise injection and
random crops.

2) Dropout: Dropout simply refers to dropping out units;
units representing both hidden and visible in the deep network
[19]. We temporarily remove the random units from the
network along with all its inlet and outlet connections. For
each training iterations, there will be new lighter network that
remains after dropping the random units from the common
denser architecture which will be sampled and trained. Each
unit is retained with the fixed probability of p independent of
other units and we set 0.5 for p, the number being optimal
choice for most of the cases.

IV. EXPERIMENTS AND RESULT

We tested the dataset with different architectures by varying
depth, width and number of parameters of network. The results
of two of those experiments are presented in the coming
sections. The first model is very wide and deep and consists of
a large number of parameters. It will be referred to as model
A in the coming section. It consists of three convolution layers
and one fully connected layer. The sequence of the layers in
model A is shown in Fig 2., where C is a convolution layer,
R is a Rectified Linear Unit Layer, N is Normalization layer
implementing Local Response Normalization, P is pooling
layer implementing max pooling, D is the Dropout layer, FC
is the Fully Connected Layer, A is accuracy layer for test set
and SL is the Softmax Loss layer that computes multinomial
logistic loss of the softmax of its input. The second model is
derived from the lenet family. It has a shallower architecture
and consists of fewer number of parameters than model A .It
will be referred to as model B in the coming section. It consists
of two convolutional layers followed by two fully connected
layers. The sequences of layers in model B is shown in Fig
3. where each notation holds similar meaning as discussed for
model A.

In all cases, Convolution is implemented with overlapping
Filter(Kernel) of Size 5∗5 and stride 1 on both direction. Pool-
ing is implemented with a non-overlapping Filter of size 2 ∗ 2
and stride 2 on both directions. Local response Normalization
is achieved by dividing each input value by the expression

(1 + (α/n)
∑
i

x2i)
β (4)

,where n is the size of each local region, and the sum is
taken over the region centered at that value. The value of α-
parameter used is 0.001 and β-parameter is 0.75.

Our deep neural network was trained on the DCD as a
multi-class classification problem. For both the models, the
standard back-propagation on feed-forward net is implemented
by stochastic gradient descent(SGD) with momentum of 0.9.
The mini-batch size is 200 and the network was trained for 50
epochs. The base learning rate was initialized for all trainable
parameters at 0.005 for Model A and 0.001 for Model B. The
learning rate was updated by an inverse function using the
relation

LR = BLR ∗ (1 + γ ∗ iterations)−power (5)

Where BLR is the Base Learning Rate and iterations is the
number iterations completed. The value of γ was set to 0.0001
and power was set to 0.75.

The result of training for 50 epoch is presented in Fig.
1. Test Accuracy remained nearly constant after 50 epochs.
For modelA, Extending Dataset showed superior result in
Test Accuracy. So, increasing number of training sample is
effective to increase performance of wide and deep network
with large bank of parameters. The highest testing accuracy
obtained for Model A is 0.98471. For model B, addition of
dropout showed better improvement in Test accuracy. However,
extending dataset also resulted slight improvement in Test
accuracy. The highest value of Testing Accuracy obtained for
this model is 0.982681.

V. CONCLUSION

We presented a new dataset Devnagari Character Dataset
which is publicly available for any researcher. It consists 92
thousand images of 46 different characters of Devnagari script.
We explored the challenges in classification of characters
in Devnagari Dataset. The challenges result due to the fact
that the dataset consists many characters that are visually
similar or written in a similar way by most people. Also,
In Devnagari script, the base form of consonant characters
can be combined with vowels to form additional characters
which is not explored in this research. For recognition, we
proposed two deep learning models to train the dataset. We
also analyzed the effect of dropout layer and dataset increment
to prevent overfitting of these networks. The experimental
results suggested that Deep CNNs with added Dropout layer
and Dataset increment technique can result in very high test
accuracy even for a diverse and challenging dataset like ours.

REFERENCES

[1] A. K. Pant, S. P. Panday, and S. R. Joshi, “Off-line nepali handwritten
character recognition using multilayer perceptron and radial basis
function neural networks,” in Internet (AH-ICI), 2012 Third Asian
Himalayas International Conference on. IEEE, 2012, pp. 1–5.

[2] V. J. Dongre and V. H. Mankar, “A review of research on devnagari
character recognition,” arXiv preprint arXiv:1101.2491, 2011.

[3] M. G. Quiles and R. A. F. Romero, “A computer vision system based on
multi-layer perceptrons for controlling mobile robots,” in Proceedings
of COBEM–18th International Congress of Mechanical Engineering,
November,(cd-rom), Ouro Preto, Minas Gerais, Brazil, 2005.

[4] D. W. Ruck, S. K. Rogers, and M. Kabrisky, “Feature selection using a
multilayer perceptron,” Journal of Neural Network Computing, vol. 2,
no. 2, pp. 40–48, 1990.

[5] J.-B. Yang, K.-Q. Shen, C.-J. Ong, and X.-P. Li, “Feature selection for
mlp neural network: The use of random permutation of probabilistic
outputs,” Neural Networks, IEEE Transactions on, vol. 20, no. 12, pp.
1911–1922, 2009.

[6] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical repre-
sentations,” in Proceedings of the 26th Annual International Conference
on Machine Learning. ACM, 2009, pp. 609–616.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[9] B. B. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Handwritten digit recognition with a back-
propagation network,” in Advances in neural information processing
systems. Citeseer, 1990.

[10] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn, “Apply-
ing convolutional neural networks concepts to hybrid nn-hmm model
for speech recognition,” in Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on. IEEE, 2012, pp.
4277–4280.

[11] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhadran,
“Deep convolutional neural networks for lvcsr,” in Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference
on. IEEE, 2013, pp. 8614–8618.

[12] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring
strategies for training deep neural networks,” The Journal of Machine
Learning Research, vol. 10, pp. 1–40, 2009.

[13] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and
S. Bengio, “Why does unsupervised pre-training help deep learning?”
The Journal of Machine Learning Research, vol. 11, pp. 625–660, 2010.

[14] A. Gaur, A history of writing. British library, 1992.
[15] S. R. Fischer, History of Writing. Reaktion Books, 2004.
[16] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex,” The Journal of
physiology, vol. 160, no. 1, p. 106, 1962.

[17] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Confer-
ence on Machine Learning (ICML-10), 2010, pp. 807–814.

[18] M. Kobetski and J. Sullivan, “Apprenticeship learning: transfer of
knowledge via dataset augmentation,” in Image Analysis. Springer,
2013, pp. 432–443.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

